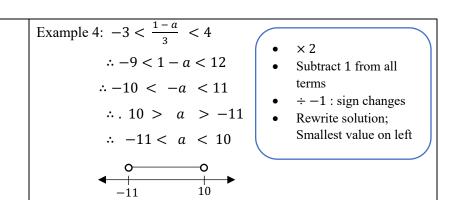


SUBJECT and GRADE	Mathematics Grade 10		
TERM 1	Week 5: Exponents, Equations and Inequalities		
TOPIC	Linear and quadratic equations and Inequalities		
AIMS OF LESSON	To solve different linear and quadratic equations		
RESOURCES	Paper based resourcesDigital resources		
	<i>Please refer to the chapter in your textbook on Solving linear equations</i>	https://www.youtube.com/watch?v=TkL0Iqs9mpY https://www.youtube.com/watch?v=GmMX3-nTWbE https://www.youtube.com/watch?v=WOn7c7PdnTk https://www.youtube.com/watch?v=wwDfD4iGBDE https://www.youtube.com/watch?v=fOnLO_5mQic https://www.youtube.com/watch?v=AuYCyMCmovU	
INTRODUCTION	In this week's lessons we will focus on ways to solve Linear and quadratic Equations.		
CONCEPTS/ SKILLS	 Number systems LCM of denominator Simplifying/ Factorising expressions Solve equations 		
Lesson 1	Revision of Gr 9: Solving Linear Equations		
Expression: $2x^3 - \frac{4x}{\sqrt{x}} + 3$ Expressions can only be simplified Equation: $2x^3 - \frac{4x}{\sqrt{x}} + 3 = 2x - 3$ Linear equations: highest exponent of the unknown (usually x) is 1 Quadratic equations: highest exponent is 2 Cubic equations: highest exponent is 3		Example 2: 2x + 3 = 2 - 3(x + 3) $\therefore 2x + 3 = 2 - 3x - 9$ $\therefore 2x + 3 - 3 + 3x = 2 - 3x - 9 - 3 + 3x$ Isolate the unknowns on LHS: remove +3 on the LHS and $-3x$ on the RHS by doing inverse	
Example 1: $2x + 3 = 7$ $\therefore 2x + 3 - 3 = 7 - $ $\therefore 2x = 4$	Isolate terms with x on LHS by adding -3 both sides 3 Solve for x by dividing both sides by 2	operations both sides of = sign $\therefore 2x + 3x = 2 - 9 - 3$ $\therefore 5x = -10$ $\Rightarrow \frac{5x}{5} = \frac{-10}{5}$ $\Rightarrow x = -2$ You can TEST the correctness of your answers by substituting the value of x into the RHS and LHS of the original equation to see if they are equal	

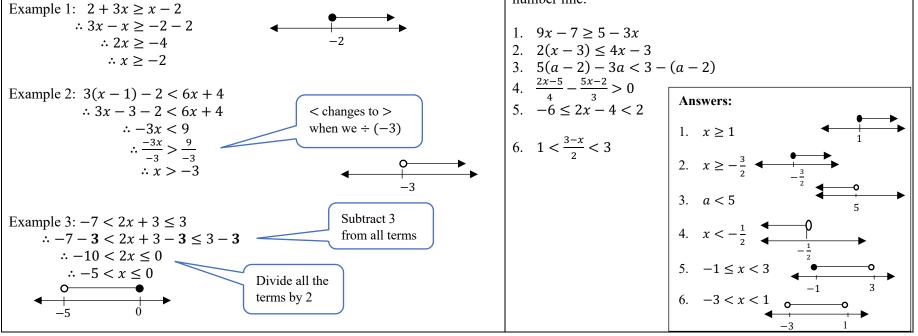
1 <u>3</u> 2	CM of 2 and 3 is 6	CAN YOU?	
Answer: $x \in \mathbb{R}$ \circ This type of equation we call • If we solve: $4(x - 2) = 4x$ $\therefore 4x - 8 = 4x$ $\therefore -8 = 0$ which can Answer: No \mathbb{R} solution for	n never be true	Solve the following equations: 1. $2x - 5 = 3$ 2. $4x + 6 = x - 3$ 3. $5a - 3(a + 1) = 2 - 3a$ 4. $2(x + 2) = 6(x + 1) - (x + 2) = 2(3b^2 + 3)$ 5. $(2b - 5)(3b + 2) = 2(3b^2 + 3)$ 6. $2(x + 1) - (3 - 2x) = 2x$ 7. $\frac{x - 2}{3} = \frac{x - 3}{4}$ 8. $\frac{5x + 8}{6} - \frac{x}{4} = \frac{2x - 9}{3}$ 9. $\frac{3(y - 1)}{2} = y - 2 + \frac{y + 1}{2}$ 10. $\frac{3}{2}(x + 3) - \frac{2x}{3} = 2 - \frac{4x - 3}{6}$	Answers: 1. $x = 4$ 2. $x = -3$ 3. $a = 1$ 4. $x = -2$ 5. $b = -4$ 6. No \mathbb{R} solution 7. $x = -1$ 8. $x = 52$
			9. $y \in \mathbb{R}$ 10. $x = -\frac{4}{3}$

esson 3	+ 4	Linear inequalities		
Symbol	Meaning	Example	Number line	
<	Less than	x < 5 Read: "x is less than 5 (all x values less than 5)"	O 5	 o - shows that the number (5) is NOT INCLUDED in the interval ▲ shows all the ℝ values to the left of 5
≤	Less than or equal to	$\begin{array}{l} x \le 5 \\ \text{``x is less than or equal} \\ \text{to 5''} \end{array}$	€ 5	 • - shows that the number (5) is INCLUDED in the interval
>	Greater than	x > 5 "x is greater than 5"		shows all the \mathbb{R} values to the right of 5
2	Greater than or equal to	$x \ge 5$ "x is greater than or equal to 5"	← → → → 5	5
Represen	tations of interv	als:		CAN YOU?A. Show the following on a number line:
-	<u>.</u>		.	$1. x \in (7; 12)$
	Notation	Set-builder notation	Number line	$2. \{x: 0 < x \le 8, x \in \mathbb{R}\}$
$x \in (-2;$	•	$\{x: -2 < x < 5, x \in \mathbb{R}\}$		3. $\{x: 5 \le x < 10, x \in \mathbb{R}\}$
	ll x values (Real	Read: All <i>x</i> values, SUCH		4. $x \in (-\infty; 3]$
) between -2	THAT x is greater than	-2 5	5. $\{x: -1 \le x < 3, x \in \mathbb{Z}\}$
and 5		-2, but less than 5 and x		
Open int		is a Real number		B. Write in set-builder notation:
г с	51	$\{x: -2 \le x \le 5, x \in \mathbb{R}\}$		
-	-	4 11 1 01 1 01 1		
All x val	lues (Real	All <i>x</i> values, SUCH		1. $x \in [0; 5)$
All x val numbers	lues (Real) from –2 to	THAT x is greater than or	 ↓ ↓	$\begin{array}{c} 1. x \in [0;5) \\ 2. \end{array}$
All x values numbers 5 (inclus	lues (Real) from -2 to ive)	THAT x is greater than or equal to -2 , but less than	 ← ← −2 5 	
numbers	lues (Real) from -2 to ive)	THAT x is greater than or	 ← ← −2 5 	$\begin{array}{c} 1. x \in [0; 5) \\ 2. \\ & & & \\ 10 \\ 3. x \in \{0; 1; 2; 3; 4\} \end{array}$


$x \in [-2; 5)$ All real numbers from and including -2 up to, but not including/ excluding 5 <i>Closed-open or half</i>	$\{x: -2 \le x < 5, x \in \mathbb{R}\}$ All <i>x</i> values, SUCH THAT <i>x</i> is greater than or equal to -2, but (and) less than 5 and <i>x</i> is a Real number	$ \begin{array}{c} \bullet \\ \bullet \\ -2 \end{array} $	C. Write in Interval notation: 1. $\underbrace{-7}$ 1 2. $\{x: x > -7, x \in \mathbb{R}\}$
open interval $x \in (-2; 5]$ All real numbersbetween -2 up to, andincluding 5Open-closed or halfclosed interval $x \in (-2; \infty)$ All real numbers greaterthan -2 Note: ∞ (infinity) –always open	$\{x: -2 < x \le 5, x \in \mathbb{R}\}$ All x values, SUCH THAT x is greater than -2, but less than or equal to 5 and x is a Real number $\{x: x > -2, x \in \mathbb{R}\}$ All x values, SUCH THAT x is greater than -2 and x is a Real number	$ \begin{array}{c} \bullet \\ -2 \\ \end{array} \\ \hline \\ -2 \\ \end{array} $	2. $\{x, x \ge -7, x \in \mathbb{N}\}$ 3. $\{x: -1 < x \le 3, x \in \mathbb{Z}\}$ Answers: A 1. $\underbrace{\circ}_{7}$ $\underbrace{\circ}_{12}$ 2. $\underbrace{\circ}_{0}$ $\underbrace{\circ}_{8}$ 3. $\underbrace{\circ}_{5}$ $\underbrace{\circ}_{10}$ 4. $\underbrace{\circ}_{3}$
NOTE: Interval notation is only used for continuous intervals (usually $x \in \mathbb{R}$) For sets of integers (\mathbb{Z}) we have, e.g.: $x \in \{-3; -2; -1; 0; 1\}$	$\{x: -4 < x < 2, x \in \mathbb{Z}\}$ Or $\{x: -3 \le x \le 1, x \in \mathbb{Z}\}$	Note: Only individual points -3-2 -1 0 1	$-1 \ 0 \ 1 \ 2$ B $1. \{x: 0 \le x < 5, x \in \mathbb{R}\}$ $2. \{x: x < 10, x \in \mathbb{R}\}$ $3. \{x: 0 \le x \le 4, x \in \mathbb{Z}\} \text{ OR } \{x: -1 < x < 5, x \in \mathbb{Z}\}$ C $1. x \in [-7; 1]$ $2. x \in (-7; \infty)$ $3. x \in (-1; 3]$

Solving Linear equations:

Note: the following statement is true: 7 > 4 (1) If we add 6 both sides: 13 > 10 is still true; Also: $7 - 6 > 4 - 6 \implies 1 > -2$ is true If we × both sides by 6 in (1): 42 > 24 is still true; Also: $\frac{7}{4} > \frac{4}{4} \implies 1\frac{3}{4} > 1$ is true. However, if we × both sides by -1 in (1): -7 > -4 is NOT TRUE The inequality sign must change!: -7 < -4


Hence, if we \times or \div an inequality with a negative (-) number, the inequality sign changes direction

Solve the following linear inequalities and show the solution on a number line:

CAN YOU?

Solve the following linear inequalities and show the solution on a number line:

Lesson 5 Quadrati	c equations: $ax^2 + bx + c = 0$		
STANDARD FORM of quadratic equ	$ation: ax^2 + bx + c = 0$	Example 6: $x^2 + 4 = 0$ $\therefore x^2 = -4$	x^2 is ALWAYS ≥ 0
NOTE: if $a.b = 0$ $\Rightarrow a = 0$ or $b = 0$	 Factorise denominators, if any Remove fractions by multiplying each term with the LCM of the denominators 	$\therefore x = \pm \sqrt{-4}$ Answer : no \mathbb{R} solution for x	Non Real number
Solve for x: Example 1: $(x - 2)(x + 3) = 0$ $\therefore x - 2 = 0$ or $x + 3 = 0$	 Remove brackets (distributive law) Write equation in standard form 	Example 7: $\frac{x^2 - 2x - 3}{x - 3} = 2$ $\times (x - 3): x^2 - 2x - 3 = 2(x - 3)$	LCM = $(x - 3); x \neq 3$ 3)
$\therefore x - 2 = 0 \text{ or } x + 3 = 0$ $\therefore x = 2 \text{ or } x = -3$	 Factorise quadratic Apply Rule: if a. b = 0 ⇒ a = 0 or b = 0 	$\therefore x^2 - 2x - 3 = 2x - $ $\therefore x^2 - 4x + 3 = 0$	6
Example 2: $x^2 - 5x - 6 = 0$ $\therefore (x - 6)(x + 1) = 0$ $\therefore x - 6 = 0 \text{ or } x + 1 = 0$ $\therefore x = 6 \text{ or } x = -1$	• The solutions of a quadratic equation are called the ROOTS of the quadratic (max of 2 roots)	$\therefore x^{2} - 4x + 3 = 0$ $\therefore (x + 1)(x - 3) = 0$ $\therefore x = -1 \text{ or } x = 3$ $\therefore x = -1$	lot applicable (not valid)
Example 3: $x^2 = -5x$ $\therefore x^2 + 5x = 0$ NOT: $\therefore x = -5$ Never divide by the unknown/ variable; you		CAN YOU? Solve for x:	
$\therefore x(x+5) = 0$ $\therefore x = 0 \text{ or } x + 5 = 0$	are (most probably) dividing by zero , which is not allowed, and you throw away one of	1. $(x+3)(x-1) = 0$	Answers:
$\therefore x = 0 \text{ or } x = -5$ Example 4: $(2x - 1)(x + 2) = 25$	the solutions: Write in standard form!! NOT: $2x - 1 = 25$ OR $x + 2 = 25$	2. $-2(x+2)(x+3) = 0$ 3. $5x(2x+1) = 0$	1. $x = -3$ or $x = 1$ 2. $x = -2$ or $x = -3$ 3. $x = 0$ or $x = -\frac{1}{2}$
$\therefore 2x^{2} + 3x - 2 - 25 = 0$ $\therefore 2x^{2} + 3x - 27 = 0$	Rule only applicable if $a.b = 0$ Write in standard form!!	4. $x^2 + 14x + 48 = 0$ 5. $2x^2 - 18 = 0$	4. $x = -6 \text{ or } x = -8$ 5. $x = 3 \text{ or } x = -3$
$\therefore (2x+9)(x-3) = 0$ $\therefore 2x+9 = 0 \text{ or } x-3 = 0$ $\therefore x = -\frac{9}{2} \text{ or } x = 3$	Alternative: $4x^2 = 9$ $\therefore x^2 = \frac{9}{4}$	6. $6x^2 = 5x + 6$ 7. $(x - 3)(x - 2) = 12$	6. $x = -\frac{2}{3}$ or $x = \frac{3}{2}$ 7. $x = 6$ or $x = -1$ 8. $x = 4$
Example 5: $4x^2 - 9 = 0$ $\therefore (2x - 3)(2x + 3) = 0$	$\therefore x = \pm \sqrt{\frac{9}{4}}$ $\therefore x = \frac{3}{2} \text{ or } x = -\frac{3}{2}$	8. $\frac{x}{x-2} + \frac{2}{2-x} = \frac{1}{x-3}$	9. $x = -\frac{2}{3}$
$\therefore x = \frac{3}{2} \text{ or } x = -\frac{3}{2}$		9. $\frac{3}{x} + \frac{3}{x^2 - x} = \frac{1}{x^2 - 1}$	

ACTIVITIES	Consider other exercises from your Mathematics Textbook
CONSOLIDATION	 Solving Linear equations: Factorise denominators, if any Remove fractions by multiplying each term with the LCM of the denominators Remove brackets (distributive law) Isolate the unknown on LHS by doing the inverse operation both sides of = sign Add like terms Solve for x by dividing with the coefficient of x both sides Linear inequalities: if we × or ÷ an inequality with a negative (-) number, the inequality sign changes direction STANDARD FORM of quadratic equation: ax² + bx + c = 0
	• Solving quadratic equations: • Factorise denominators, if any • Remove fractions by multiplying each term with the LCM of the denominators • Remove brackets (distributive law) • Write equation in standard form • Factorise quadratic • Apply Rule: if $a.b = 0$ $\Rightarrow a = 0$ or $b = 0$ • The solutions of a quadratic equation are called the ROOTS of the quadratic (max of 2 roots)
VALUES	Dear learner. Mathematics is not (just) about numbers, equations, computations, or algorithms: it is about understanding - William Paul Thurston Understanding comes through PRACTICE. Keep practicing Mathematics every day!